Index:
CPU_ELAN(4)CPU_SOEKRIS(4)
aac(4)
acd(4)
acpi(4)
acpi_asus(4)
acpi_panasonic(4)
acpi_thermal(4)
acpi_toshiba(4)
acpi_video(4)
ad(4)
adv(4)
adw(4)
afd(4)
agp(4)
agpgart(4)
aha(4)
ahb(4)
ahc(4)
ahd(4)
aic(4)
aio(4)
alpm(4)
altq(4)
amd(4)
amdpm(4)
amr(4)
an(4)
apm(4)
ar(4)
arcmsr(4)
arl(4)
arp(4)
asr(4)
ast(4)
ata(4)
atapicam(4)
ath(4)
ath_hal(4)
atkbd(4)
atkbdc(4)
aue(4)
awi(4)
axe(4)
bfe(4)
bge(4)
bktr(4)
blackhole(4)
bpf(4)
bridge(4)
brooktree(4)
bt(4)
cam(4)
card(4)
cardbus(4)
carp(4)
cbb(4)
ccd(4)
cd(4)
cdce(4)
ch(4)
ciss(4)
cm(4)
cnw(4)
cp(4)
cpufreq(4)
crypto(4)
cryptodev(4)
cs(4)
ct(4)
ctau(4)
cue(4)
cx(4)
cy(4)
da(4)
dc(4)
dcons(4)
dcons_crom(4)
ddb(4)
de(4)
devctl(4)
digi(4)
disc(4)
divert(4)
dpt(4)
dummynet(4)
ed(4)
ef(4)
ehci(4)
el(4)
em(4)
en(4)
ep(4)
esp(4)
ex(4)
exca(4)
faith(4)
fast_ipsec(4)
fatm(4)
fd(4)
fdc(4)
fe(4)
fea(4)
firewire(4)
fla(4)
fpa(4)
fwe(4)
fwip(4)
fwohci(4)
fxp(4)
gbde(4)
gdb(4)
gem(4)
geom(4)
gif(4)
gre(4)
gx(4)
harp(4)
hatm(4)
hfa(4)
hifn(4)
hme(4)
hptmv(4)
i4b(4)
i4bcapi(4)
i4bctl(4)
i4bing(4)
i4bipr(4)
i4bisppp(4)
i4bq921(4)
i4bq931(4)
i4brbch(4)
i4btel(4)
i4btrc(4)
iavc(4)
ichsmb(4)
ichwd(4)
icmp(4)
icmp6(4)
ida(4)
idt(4)
ie(4)
ieee80211(4)
if_an(4)
if_aue(4)
if_awi(4)
if_axe(4)
if_bfe(4)
if_bge(4)
if_cue(4)
if_dc(4)
if_de(4)
if_disc(4)
if_ed(4)
if_ef(4)
if_em(4)
if_en(4)
if_faith(4)
if_fatm(4)
if_fwe(4)
if_fwip(4)
if_fxp(4)
if_gem(4)
if_gif(4)
if_gre(4)
if_gx(4)
if_hatm(4)
if_hme(4)
if_idt(4)
if_kue(4)
if_lge(4)
if_my(4)
if_ndis(4)
if_nge(4)
if_oltr(4)
if_patm(4)
if_pcn(4)
if_ppp(4)
if_re(4)
if_rl(4)
if_rue(4)
if_sbni(4)
if_sbsh(4)
if_sf(4)
if_sis(4)
if_sk(4)
if_sl(4)
if_sn(4)
if_ste(4)
if_stf(4)
if_tap(4)
if_ti(4)
if_tl(4)
if_tun(4)
if_tx(4)
if_txp(4)
if_udav(4)
if_vge(4)
if_vlan(4)
if_vr(4)
if_wb(4)
if_wi(4)
if_xe(4)
if_xl(4)
ifmib(4)
ifpi(4)
ifpi2(4)
ifpnp(4)
ihfc(4)
iic(4)
iicbb(4)
iicbus(4)
iicsmb(4)
iir(4)
imm(4)
inet(4)
inet6(4)
intpm(4)
intro(4)
io(4)
ip(4)
ip6(4)
ipaccounting(4)
ipacct(4)
ipf(4)
ipfirewall(4)
ipfw(4)
ipl(4)
ipnat(4)
ips(4)
ipsec(4)
isic(4)
isp(4)
ispfw(4)
itjc(4)
iwic(4)
ixgb(4)
joy(4)
kame(4)
keyboard(4)
kld(4)
kmem(4)
ktr(4)
kue(4)
led(4)
lge(4)
linux(4)
lnc(4)
lo(4)
longrun(4)
loop(4)
lp(4)
lpbb(4)
lpt(4)
mac(4)
mac_biba(4)
mac_bsdextended(4)
mac_ifoff(4)
mac_lomac(4)
mac_mls(4)
mac_none(4)
mac_partition(4)
mac_portacl(4)
mac_seeotheruids(4)
mac_stub(4)
mac_test(4)
mcd(4)
md(4)
mem(4)
meteor(4)
miibus(4)
mlx(4)
mly(4)
mouse(4)
mpt(4)
mse(4)
mtio(4)
multicast(4)
my(4)
natm(4)
natmip(4)
ncr(4)
ncv(4)
ndis(4)
net(4)
netgraph(4)
netintro(4)
networking(4)
ng_UI(4)
ng_async(4)
ng_atm(4)
ng_atmllc(4)
ng_atmpif(4)
ng_bluetooth(4)
ng_bpf(4)
ng_bridge(4)
ng_bt3c(4)
ng_btsocket(4)
ng_ccatm(4)
ng_cisco(4)
ng_device(4)
ng_echo(4)
ng_eiface(4)
ng_etf(4)
ng_ether(4)
ng_fec(4)
ng_frame_relay(4)
ng_gif(4)
ng_gif_demux(4)
ng_h4(4)
ng_hci(4)
ng_hole(4)
ng_hub(4)
ng_iface(4)
ng_ip_input(4)
ng_ksocket(4)
ng_l2cap(4)
ng_l2tp(4)
ng_lmi(4)
ng_mppc(4)
ng_netflow(4)
ng_one2many(4)
ng_ppp(4)
ng_pppoe(4)
ng_pptpgre(4)
ng_rfc1490(4)
ng_socket(4)
ng_split(4)
ng_sppp(4)
ng_sscfu(4)
ng_sscop(4)
ng_tee(4)
ng_tty(4)
ng_ubt(4)
ng_uni(4)
ng_vjc(4)
ng_vlan(4)
nge(4)
nmdm(4)
npx(4)
nsp(4)
null(4)
ohci(4)
oldcard(4)
oltr(4)
opie(4)
orm(4)
pae(4)
pass(4)
patm(4)
pccard(4)
pccbb(4)
pcf(4)
pci(4)
pcic(4)
pcm(4)
pcn(4)
pcvt(4)
perfmon(4)
pf(4)
pflog(4)
pfsync(4)
pim(4)
plip(4)
pnp(4)
pnpbios(4)
polling(4)
ppbus(4)
ppc(4)
ppi(4)
ppp(4)
psm(4)
pst(4)
pt(4)
pty(4)
puc(4)
random(4)
rawip(4)
ray(4)
rc(4)
re(4)
rl(4)
rndtest(4)
route(4)
rp(4)
rue(4)
sa(4)
sab(4)
safe(4)
sbni(4)
sbp(4)
sbp_targ(4)
sbsh(4)
sc(4)
scbus(4)
scd(4)
sched_4bsd(4)
sched_ule(4)
screen(4)
screensaver(4)
scsi(4)
sem(4)
ses(4)
sf(4)
si(4)
sio(4)
sis(4)
sk(4)
skey(4)
sl(4)
smapi(4)
smb(4)
smbus(4)
smp(4)
sn(4)
snc(4)
snd(4)
snd_ad1816(4)
snd_als4000(4)
snd_cmi(4)
snd_cs4281(4)
snd_csa(4)
snd_ds1(4)
snd_emu10k1(4)
snd_es137x(4)
snd_ess(4)
snd_fm801(4)
snd_gusc(4)
snd_ich(4)
snd_maestro(4)
snd_maestro3(4)
snd_neomagic(4)
snd_sbc(4)
snd_solo(4)
snd_uaudio(4)
snd_via8233(4)
snd_via82c686(4)
snd_vibes(4)
snp(4)
sound(4)
speaker(4)
spic(4)
spkr(4)
splash(4)
sppp(4)
sr(4)
stderr(4)
stdin(4)
stdout(4)
ste(4)
stf(4)
stg(4)
streams(4)
svr4(4)
sym(4)
syncache(4)
syncer(4)
syncookies(4)
syscons(4)
sysmouse(4)
tap(4)
targ(4)
tcp(4)
tdfx(4)
termios(4)
ti(4)
tl(4)
trm(4)
ttcp(4)
tty(4)
tun(4)
twa(4)
twe(4)
tx(4)
txp(4)
uart(4)
ubsa(4)
ubsec(4)
ubser(4)
ubtbcmfw(4)
ucom(4)
udav(4)
udbp(4)
udp(4)
ufm(4)
uftdi(4)
ugen(4)
uhci(4)
uhid(4)
uhidev(4)
ukbd(4)
ulpt(4)
umass(4)
umct(4)
umodem(4)
ums(4)
unix(4)
uplcom(4)
urio(4)
usb(4)
uscanner(4)
utopia(4)
uvisor(4)
uvscom(4)
vga(4)
vge(4)
viapm(4)
vinum(4)
vinumdebug(4)
vlan(4)
vn(4)
vpd(4)
vpo(4)
vr(4)
vt(4)
vx(4)
watchdog(4)
wb(4)
wd(4)
wdc(4)
wi(4)
witness(4)
wl(4)
wlan(4)
worm(4)
xe(4)
xl(4)
xpt(4)
zero(4)
rawip(4)
NAME
ip -- Internet Protocol
SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
int
socket(AF_INET, SOCK_RAW, proto);
DESCRIPTION
IP is the transport layer protocol used by the Internet protocol family.
Options may be set at the IP level when using higher-level protocols that
are based on IP (such as TCP and UDP). It may also be accessed through a
``raw socket'' when developing new protocols, or special-purpose applica-
tions.
There are several IP-level setsockopt(2) and getsockopt(2) options.
IP_OPTIONS may be used to provide IP options to be transmitted in the IP
header of each outgoing packet or to examine the header options on incom-
ing packets. IP options may be used with any socket type in the Internet
family. The format of IP options to be sent is that specified by the IP
protocol specification (RFC-791), with one exception: the list of
addresses for Source Route options must include the first-hop gateway at
the beginning of the list of gateways. The first-hop gateway address
will be extracted from the option list and the size adjusted accordingly
before use. To disable previously specified options, use a zero-length
buffer:
setsockopt(s, IPPROTO_IP, IP_OPTIONS, NULL, 0);
IP_TOS and IP_TTL may be used to set the type-of-service and time-to-live
fields in the IP header for SOCK_STREAM, SOCK_DGRAM, and certain types of
SOCK_RAW sockets. For example,
int tos = IPTOS_LOWDELAY; /* see <netinet/ip.h> */
setsockopt(s, IPPROTO_IP, IP_TOS, &tos, sizeof(tos));
int ttl = 60; /* max = 255 */
setsockopt(s, IPPROTO_IP, IP_TTL, &ttl, sizeof(ttl));
If the IP_RECVDSTADDR option is enabled on a SOCK_DGRAM socket, the
recvmsg(2) call will return the destination IP address for a UDP data-
gram. The msg_control field in the msghdr structure points to a buffer
that contains a cmsghdr structure followed by the IP address. The
cmsghdr fields have the following values:
cmsg_len = sizeof(struct in_addr)
cmsg_level = IPPROTO_IP
cmsg_type = IP_RECVDSTADDR
The source address to be used for outgoing UDP datagrams on a socket that
is not bound to a specific IP address can be specified as ancillary data
with a type code of IP_SENDSRCADDR. The msg_control field in the msghdr
structure should point to a buffer that contains a cmsghdr structure fol-
lowed by the IP address. The cmsghdr fields should have the following
be used directly as a control message for sendmsg(2).
If the IP_ONESBCAST option is enabled on a SOCK_DGRAM or a SOCK_RAW
socket, the destination address of outgoing broadcast datagrams on that
socket will be forced to the undirected broadcast address,
INADDR_BROADCAST, before transmission. This is in contrast to the
default behavior of the system, which is to transmit undirected broad-
casts via the first network interface with the IFF_BROADCAST flag set.
This option allows applications to choose which interface is used to
transmit an undirected broadcast datagram. For example, the following
code would force an undirected broadcast to be transmitted via the inter-
face configured with the broadcast address 192.168.2.255:
char msg[512];
struct sockaddr_in sin;
u_char onesbcast = 1; /* 0 = disable (default), 1 = enable */
setsockopt(s, IPPROTO_IP, IP_ONESBCAST, &onesbcast, sizeof(onesbcast));
sin.sin_addr.s_addr = inet_addr("192.168.2.255");
sin.sin_port = htons(1234);
sendto(s, msg, sizeof(msg), 0, &sin, sizeof(sin));
It is the application's responsibility to set the IP_TTL option to an
appropriate value in order to prevent broadcast storms. The application
must have sufficient credentials to set the SO_BROADCAST socket level
option, otherwise the IP_ONESBCAST option has no effect.
If the IP_RECVTTL option is enabled on a SOCK_DGRAM socket, the
recvmsg(2) call will return the IP TTL (time to live) field for a UDP
datagram. The msg_control field in the msghdr structure points to a
buffer that contains a cmsghdr structure followed by the TTL. The cms-
ghdr fields have the following values:
cmsg_len = sizeof(u_char)
cmsg_level = IPPROTO_IP
cmsg_type = IP_RECVTTL
If the IP_RECVIF option is enabled on a SOCK_DGRAM socket, the recvmsg(2)
call returns a struct sockaddr_dl corresponding to the interface on which
the packet was received. The msg_control field in the msghdr structure
points to a buffer that contains a cmsghdr structure followed by the
struct sockaddr_dl. The cmsghdr fields have the following values:
cmsg_len = sizeof(struct sockaddr_dl)
cmsg_level = IPPROTO_IP
cmsg_type = IP_RECVIF
IP_PORTRANGE may be used to set the port range used for selecting a local
port number on a socket with an unspecified (zero) port number. It has
the following possible values:
IP_PORTRANGE_DEFAULT use the default range of values, normally
IPPORT_HIFIRSTAUTO through IPPORT_HILASTAUTO. This
is adjustable through the sysctl setting:
net.inet.ip.portrange.first and
net.inet.ip.portrange.last.
The range is normally from IPPORT_RESERVED - 1 down
to IPPORT_RESERVEDSTART in descending order. This
is adjustable through the sysctl setting:
net.inet.ip.portrange.lowfirst and
net.inet.ip.portrange.lowlast.
The range of privileged ports which only may be opened by root-owned pro-
cesses may be modified by the net.inet.ip.portrange.reservedlow and
net.inet.ip.portrange.reservedhigh sysctl settings. The values default
to the traditional range, 0 through IPPORT_RESERVED - 1 (0 through 1023),
respectively. Note that these settings do not affect and are not
accounted for in the use or calculation of the other
net.inet.ip.portrange values above. Changing these values departs from
UNIX tradition and has security consequences that the administrator
should carefully evaluate before modifying these settings.
Ports are allocated at random within the specified port range in order to
increase the difficulty of random spoofing attacks. In scenarios such as
benchmarking, this behavior may be undesirable. In these cases,
net.inet.ip.portrange.randomized can be used to toggle randomization off.
If more than net.inet.ip.portrange.randomcps ports have been allocated in
the last second, then return to sequential port allocation. Return to
random allocation only once the current port allocation rate drops below
net.inet.ip.portrange.randomcps for at least
net.inet.ip.portrange.randomtime seconds. The default values for
net.inet.ip.portrange.randomcps and net.inet.ip.portrange.randomtime are
10 port allocations per second and 45 seconds correspondingly.
Multicast Options
IP multicasting is supported only on AF_INET sockets of type SOCK_DGRAM
and SOCK_RAW, and only on networks where the interface driver supports
multicasting.
The IP_MULTICAST_TTL option changes the time-to-live (TTL) for outgoing
multicast datagrams in order to control the scope of the multicasts:
u_char ttl; /* range: 0 to 255, default = 1 */
setsockopt(s, IPPROTO_IP, IP_MULTICAST_TTL, &ttl, sizeof(ttl));
Datagrams with a TTL of 1 are not forwarded beyond the local network.
Multicast datagrams with a TTL of 0 will not be transmitted on any net-
work, but may be delivered locally if the sending host belongs to the
destination group and if multicast loopback has not been disabled on the
sending socket (see below). Multicast datagrams with TTL greater than 1
may be forwarded to other networks if a multicast router is attached to
the local network.
For hosts with multiple interfaces, each multicast transmission is sent
from the primary network interface. The IP_MULTICAST_IF option overrides
the default for subsequent transmissions from a given socket:
struct in_addr addr;
setsockopt(s, IPPROTO_IP, IP_MULTICAST_IF, &addr, sizeof(addr));
where "addr" is the local IP address of the desired interface or
INADDR_ANY to specify the default interface. An interface's local IP
address and multicast capability can be obtained via the SIOCGIFCONF and
SIOCGIFFLAGS ioctls. Normal applications should not need to use this
u_char loop; /* 0 = disable, 1 = enable (default) */
setsockopt(s, IPPROTO_IP, IP_MULTICAST_LOOP, &loop, sizeof(loop));
This option improves performance for applications that may have no more
than one instance on a single host (such as a router daemon), by elimi-
nating the overhead of receiving their own transmissions. It should gen-
erally not be used by applications for which there may be more than one
instance on a single host (such as a conferencing program) or for which
the sender does not belong to the destination group (such as a time
querying program).
A multicast datagram sent with an initial TTL greater than 1 may be
delivered to the sending host on a different interface from that on which
it was sent, if the host belongs to the destination group on that other
interface. The loopback control option has no effect on such delivery.
A host must become a member of a multicast group before it can receive
datagrams sent to the group. To join a multicast group, use the
IP_ADD_MEMBERSHIP option:
struct ip_mreq mreq;
setsockopt(s, IPPROTO_IP, IP_ADD_MEMBERSHIP, &mreq, sizeof(mreq));
where mreq is the following structure:
struct ip_mreq {
struct in_addr imr_multiaddr; /* IP multicast address of group */
struct in_addr imr_interface; /* local IP address of interface */
}
imr_interface should be set to INADDR_ANY to choose the default multicast
interface, or the IP address of a particular multicast-capable interface
if the host is multihomed. Since FreeBSD 4.4, if the imr_interface mem-
ber is within the network range 0.0.0.0/8, it is treated as an interface
index in the system interface MIB, as per the RIP Version 2 MIB Extension
(RFC-1724).
Membership is associated with a single interface; programs running on
multihomed hosts may need to join the same group on more than one inter-
face. Up to IP_MAX_MEMBERSHIPS (currently 20) memberships may be added
on a single socket.
To drop a membership, use:
struct ip_mreq mreq;
setsockopt(s, IPPROTO_IP, IP_DROP_MEMBERSHIP, &mreq, sizeof(mreq));
where mreq contains the same values as used to add the membership. Mem-
berships are dropped when the socket is closed or the process exits.
Raw IP Sockets
Raw IP sockets are connectionless, and are normally used with the
sendto(2) and recvfrom(2) calls, though the connect(2) call may also be
used to fix the destination for future packets (in which case the read(2)
or recv(2) and write(2) or send(2) system calls may be used).
If proto is 0, the default protocol IPPROTO_RAW is used for outgoing
packets, and only incoming packets destined for that protocol are
IP_HDRINCL indicates the complete IP header is included with the data and
may be used only with the SOCK_RAW type.
#include <netinet/in_systm.h>
#include <netinet/ip.h>
int hincl = 1; /* 1 = on, 0 = off */
setsockopt(s, IPPROTO_IP, IP_HDRINCL, &hincl, sizeof(hincl));
Unlike previous BSD releases, the program must set all the fields of the
IP header, including the following:
ip->ip_v = IPVERSION;
ip->ip_hl = hlen >> 2;
ip->ip_id = 0; /* 0 means kernel set appropriate value */
ip->ip_off = offset;
The ip_len and ip_off fields must be provided in host byte order . All
other fields must be provided in network byte order. See byteorder(4)
for more information on network byte order. If the ip_id field is set to
0 then the kernel will choose an appropriate value. If the header source
address is set to INADDR_ANY, the kernel will choose an appropriate
address.
ERRORS
A socket operation may fail with one of the following errors returned:
[EISCONN] when trying to establish a connection on a socket
which already has one, or when trying to send a data-
gram with the destination address specified and the
socket is already connected;
[ENOTCONN] when trying to send a datagram, but no destination
address is specified, and the socket hasn't been con-
nected;
[ENOBUFS] when the system runs out of memory for an internal
data structure;
[EADDRNOTAVAIL] when an attempt is made to create a socket with a net-
work address for which no network interface exists.
[EACCES] when an attempt is made to create a raw IP socket by a
non-privileged process.
The following errors specific to IP may occur when setting or getting IP
options:
[EINVAL] An unknown socket option name was given.
[EINVAL] The IP option field was improperly formed; an option
field was shorter than the minimum value or longer
than the option buffer provided.
The following errors may occur when attempting to send IP datagrams via a
``raw socket'' with the IP_HDRINCL option set:
[EINVAL] The user-supplied ip_len field was not equal to the
FreeBSD 5.4 March 23, 2005 FreeBSD 5.4
SPONSORED LINKS
Man(1) output converted with man2html , sed , awk
FreeBSD Man Pages